autor: Daniel Capone
progresión aritmética
Una progresión aritmética es una sucesión de números tales que cada uno de ellos (salvo el primero) es igual al anterior más un número fijo llamado diferencia que se representa por d.
8, 3, -2, -7, -12, ...
3 - 8 = -5
-2 - 3 = -5
-7 - (-2) = -5
-12 - (-7) = -5
d= -5.
Término general de una progresión aritmética
1 Si conocemos el 1er término.
an = a1 + (n - 1) • d
8, 3, -2, -7, -12, ..
an= 8 + (n-1) (-5) = 8 -5n +5 = = -5n + 13
2 Si conocemos el valor que ocupa cualquier otro término de la progresión.
an = ak + (n - k) • d
a4= -7 y d= -5
an = -7+ (n - 4) • (-5)= -7 -5n +20 = -5n + 13
Suma de términos equidistantes de una progresión aritmética
Sean ai y aj dos términos equidistantes de los extremos, se cumple que la suma de términos equidistantes es igual a la suma de los extremos.
ai + aj = a1 + an
a3 + an-2 = a2 + an-1 = ... = a1 + an
8, 3, -2, -7, -12, ...
3 + (-7) = (-2) + (-2) = 8 + (-12)
-4 = -4 = -4
Suma de n términos consecutivos de una progresión aritmética
Calcular la suma de los primeros 5 términos de la progresión : 8, 3, -2, -7, -12, ...
progresión aritmética
Término general de una progresión aritmética
an = a1 + (n - 1) • d
an = ak + (n - k) • d
nterpolación de términos
Sean los extremos a y b, y el número de medios a interpolar m.
Suma de términos equidistantes
ai + aj = a1 + an
a3 + an-2 = a2 + an-1 = a1 + an
Suma de n términos consecutivos
Progresiones geométricas
Término general de una progresión geométrica
an = a1 • rn-1
an = ak • rn-k
Interpolación de términos
Suma de n términos consecutivos
Suma de los términos de una progresión geométrica decreciente
Producto de dos términos equidistantes
ai . aj = a1 . an
a3 • an-2 = a2 • an-1 = ... = a1 • an
Producto de n términos equidistantes
jueves, 11 de marzo de 2010
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario